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We study the dynamical breakdown of approximate scale invariance 1n gauge theories with slowly varying couplings and with-
out ultraviolet cutoff We 1solate the high energy contribution to the dilaton mass and obtain an expression for 1t 1n terms of the
fermion self-energy Z(k) Z'(k) 1s determined via an analytical treatment of the linearized, ladder Schwinger-Dyson equation
We find that this contribution to the dilaton mass 1s large and 1s surprisingly 1nsensitive to the -function when the S-function 1s
small. The result 1s that for a technicolor theory with a slowly varying coupling there is no light dilaton At most there 1s a massive
scalar, the analog of the standard Higgs scalar, with a mass tied to the technifermion mass scale

There has been recent interest in chiral symmetry
breaking occurring in theories having slowly varying
gauge couplings. Old problems in technicolor theo-
ries concerning flavor changing neutral currents and
low mass technipions may be alleviated [1-4] and
additional predictions may result as well [5]. A small
B-function also gives some handle on the study of
chiral symmetry breaking beyond the ladder ap-
proximation {6].

A small S-function and chiral symmetry breaking
seem to imply a spontaneous breakdown of approx-
imate scale symmetry. This led to speculation about
a light dilaton in technicolor theories [3]. This par-
ticle is the analog of the standard neutral Higgs: it
has the same quantum numbers and it couples sim-
ilarly to quarks and leptons. But unlike the Higgs we
may hope to determine the dilaton mass. The first
guess is that the dilaton mass squared is proportional
to the S-function, and could thus be small [3]. An-
other interpretation is that the dilaton mass 1s of or-
der the confinement scale, which could also be small
[7].

In ref. [8] we studied the contribution to the di-
laton mass arising from energy scales large compared
to the chiral symmetry breaking scale. In particular
we 1solated the contribution to the mass due to a
physical ultraviolet cutoff, corresponding to new
“sideways” physics in a technicolor theory. We found
that this contribution in fact grew the slower the cou-
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pling « (k) fell for increasing k. When combined with
the contribution arising from the variation of a(k)
we found that the total high energy contribution to
the mass was always large. A hight dilaton was un-
likely. (Ref. [9] continued the study of the dilaton
mass for the case of a constant coupling, with a sim-
ilar conclusion, although the physical interpretation
of the ultraviolet cutoff in that reference differs from
ours.) But we found that the mass did decrease
somewhat with increasing cutoff, and the possibility
remained that a smaller mass could result if the si-
deways physics was represented by something less
severe than a cutoff.

In this paper we ask how the dilaton mass behaves
in a barely asymptotically free theory with no phys-
1cal ultraviolet cutoff. We again focus on the high en-
ergy contribution to the dilaton mass. The slow
variation of the coupling a(k) 1s the only source of
explicit breaking of scale invariance and one would
guess that the slower o(k) decreased for increasing
k, the smaller this contribution to the dilaton mass
would become. But this 1s not what we find.

For the dilaton mass squared we derive an integral
expression involving the fermion self-energy (k).
The dependence on the S-function is such that 1if (k)
were held fixed the mass squared would vanish lin-
early with 8 as narvely expected. But previous work
[6,5] has shown that as § decreases the function
kX (k) peaks at ever increasing momentum scales.
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The integrand in the mass formula behaves similarly
and the net result is a dilaton mass with surprisingly
little dependence on 8. We obtain a simple expres-
sion for small # which shows that the mass 1s of or-
der of the dynamucal fermion mass. This contribution
may well dominate any further contribution to the
dilaton mass arising from confinement physics.

Thas latter fact is well 1llustrated in a theory which
generates a fermion mass much higher than the con-
finement scale due to a large Casimir C, for the fer-
mion representation. We find that the dilaton mass
remains tied to the dynamical fermion mass scale. It
15 also of interest that one may justify an arbitrarily
small 8-function to all orders in « in the limit of large
C, and small number of flavors [6]. The S-function
is then small since chiral symmetry breaking is oc-
curring at small «. It is in this type of limit that the
results of this paper are particularly striking.

We will work within the standard ladder approx-
1mation. But our basic result concerning the high en-
ergy contribution to the dilaton mass 1s not, we
believe, just a special consequence of this approxi-
mation. One of us has argued [6] that the general
form of kX (k) for small § expected beyond the lad-
der approximation is similar to that obtained in the
ladder approximation. It is the tendency for the peak
of the function £X'( k) to occur at ever increasing mo-
mentum scales as f decreases which is responsible
for the basic result.

The dilaton mass is obtained by noting the be-
havior of the effective action under scale transfor-
mations. Our result appears somewhat surprising to
the extent that the scale breaking in the effective ac-
tion apparently vanishes as # vanishes. But the ef-
fective action is a functional of Z(k) and when
minimized the preferred point in function space does
turn out to be characterized by large scale breaking,
for arbitrarily small but nonzero 8. That is, upon
minimization, the mntegrals in the effective action al-
ways receive support over such a large range of mo-
mentum that it 1s never a good approximation to set
the coupling «(k) equal to a constant.

And on the other hand if the coupling actually was
constant (8 =0) then there 1s no local minimum of
the effective action, unless an ultraviolet cutoff 1s
mmposed [10]. But then it is the ultraviolet cutoff
which breaks scale invariance and which ensures a
large dilaton mass [8,9].
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We shall obtain our results via an analytical treat-
ment of the linearized ladder Schwinger-Dyson (SD)
ladder, making use of the observation in ref, [11]
that the solution 2 (k) is related to a Whittaker func-
tion. And we shall derive the appropriate infrared
boundary condition directly from the linearization
procedure (our boundary condition is different to
that used in ref. [11]). Ref. [5] shows that the 2 (k)
so obtained agrees quite well with a numerical anal-
ysis of the nonlinear equation.

We begin by considering the effective action for a
theory with n flavors of massless fermions coupled
to a non-abelian gauge field. The fermions are 1n a
representation r of the gauge group SU(X) with di-
mension 4(r) and quadratic Casimir C,(r). In Lan-
dau gauge and in euchidean space we consider the
effective action I' to two-loop order and include as
well higher order diagrams responsible for the run-
ning coupling a(k) [12,4].

4r>(p) (p2+22(p))]
X[p2+22(p) 2 p’

3nd(1)Co(0) [ . pE(p) T ., KZ(K)
TS J;dppz+22(p).([d E+Z2(k)
X min{k/p, p/k} a(max{p, k}). (1

We follow the derivation of the dilaton mass in ref.
[8] except that now we do not use an ultraviolet cut-
off. The method consists of examining the behavior
of I'(p) obtamned by making a scale transformation
of the order parameter 2(p)-—e?2(e~"p). If the di-
laton is considered to be the pseudo-Goldstone bo-
son of spontaneously broken scale invariance, then
d* I (p)/dp*|,—o=mif5, where m, 1s the dilaton
mass, and f; is the dilaton decay constant. This 1s
analogous to finding the pion mass by noting how
the vacuum energy changes when (ww ) undergoes
a chrral transformation.

The nontrivial p dependence arises from the sec-
ond term in (1) and thus I'(p) takes the form

I'(p)=e¥[c~f(p)], (2)
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where c is independent of p and f(p) may be written
as

kX(k)a(e’k)
k2+Z%k)

f(p)= 3"“;7)52“) jdk
0
A
p*2(p)
X J dpm . (3)

Using the fact that dI"(p)/dp|,.o==0 we find
m2f2=d>I'(p)/dp | =0
=—4f"(0)—/"(0). (4)

It 1s clear that if (k) is held fixed then the slower
a(k) varies with momentum, the smaller m, be-
comes. But of course 2(k) does depend on how a (k)
evolves and it is this dependence to which we now
turn. The equation of motion AI'/82 =0 is just the
ladder SD equation with the running coupling
inserted:

_ AMa) bX(b) ADYZ(D)
Z(@)= Jdbb+22(b) jdbb+22(b) ()
with
AMa)=a(a)do,, a.=n/3C,(r), (6)

and where ¢ and b denote momenta squared.

For an asymptotically free theory the solution £(a)
to (5) turns out to be a monotonically decreasing
function of . With this 1n mind we find 1t useful to
define the scale k satisfying X' (x*) =«x. For b<x? 1n
(5) the denominators are dominated by X(b) and
this damps the integrals in the infrared. To study (5)
analytically we will linearize 1t by replacing b+ Z?(5)
by b 1n the denominators and by introducing an in-
frared cutoff at k2.

We are justified in making this approximation in
the case of a slowly varying coupling. In this case the
obtained solution implies that the action I receives
most of 1ts contribution from momentum scales much
larger than x. This indicates that the solution X(a)
for a>k? 1s relatively insensitive to the manner in
which the integrals in (5) are damped in the in-
frared. And we will find that most of the contribu-
tion to the dilaton mass integral also comes from large
momenta.

We shall therefore replace (5) by the following.
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Ma) | T AB)YE(b)
Z(a)=7£dbz<b)+ Jde, (7)
(k) =k. (8)

Note that these equations must determine x as well
as XZ(a). The integral equation may now be con-
verted into a differential equation

p (Wa)" : -
27 (a)— (a) —=2'(a)~(AMa)' Z(a)=0, (9)
with
(k) =k, Z'(k¥)=0. (10)

Note the new boundary condition. We shall also be
requiring that the solution has the appropriate
asymptotic behavior.

For asymptotically free theories we are motivated
to parameterize 4 by

AMx)=A2x, x=In(a/4?). an

This corresponds to kd.a(k)=—ba?(k) with
A=1/ba,. (This lowest order result may actually be
justified to all orders in «, for the « relevant for the
chiral symmetry breaking, in the limit C,(r) > N and
C,{r)n< N3d(r) [6].) If we change variables 1n (9),
use (11), and define [11]

G(x) =(x/x)"V? exp[(x—x,)/212(x) /%,

with x,=In(k2/4%), we obtain

oy G (=1 A1 A-]
G(x)+x(x+1)+( o T 2x2)

X G(x) =0, (12)
G(x)=1, G'(x)=3(1+1/xp). (13)

Of interest are theories with slowly varying cou-
pling constants, i.e. theories where A is large. But we
will find that chiral symmetry breaking occurs when
the coupling 1s close to the critical coupling,
2A/xy=a(xp)/ .~ 1. Thus since we need only con-
sider x = xy 2 A we may neglect certain terms in (12)
and consider nstead

1 4

G"(x)+ <T + ———) G(x)=0. (14)

Eq. (14) was obtained in ref. [11] where it was
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noted that it 1s a special case of Whittaker’s equation
[13}:

1 2
W (x)+ (ll— + 24 G=) )> W(x)=0. (I5)
4 X X

The general solution to this equation may be ex-
pressed as a linear combination of the Whittaker
function W, ,(x) and the linearly independent func-
tion W_, ,(—x). Since we are interested 1n large x
we may neglect the 1/x° terms as before, as long as
4*— 1} is not too large. This gives us some freedom in
choosing u. In any case it 15 fortunate that we may
neglect the 1/x2 term 1n eq. (12), since its large and
positive coefficient cannot be reproduced by Whit-
taker's equation.

It is well known that the asymptotic form of the
spontaneous chiral symmetry breaking solution to
the SD equation in an asymptotically free theory 1s
Z(x)—e x"?~! as x—o0 [14]. This 1s just what
follows from G(x)=W i_n..{(x). On the other
hand G(x)=W_ ,_,,2..(—X) yields the asymptotic
behavior of the explicit chiral symmetry breaking so-
lution [14]: X'(x) »x~** as x—o0. The existence of
an ultraviolet cutoff will 1n general require a hinear
combination of these two solutions. But 1n our case
of no ultraviolet cutoff only the first solution gives
the correct asymptotic behavior.

We now have the function form of the self-energy

Z(X)Ixh‘/ze_‘/zW(4_])/2”(.x). (16)

We may relate this to the degenerate hypergeometric
function via the identity

W,u(x)=e2x 2 U(u—y+4, 1+2u,x)  (17)
and obtain
Z(x)ce x*U(—AR+1+pu, 1424, x). (18)

Xo 18 determuned from the boundary condition in
(10), 2'(x0)=0. For x>Xx, we require that Z(x)
monotonically decrease towards zero (solutions with
nodes will give a larger action). Thus x; is the largest
x at which the function on the RHS of (18) has a
local maximum. We first wish to show as claimed
above that x, 2 A4 for large A. We may do this by not-
ing that U(—n, m+1, x) with n and m integers is
simply related to the associated Laguerre polynomial
U(—n,m+1,x)=(-1)"n!L,"(x). Then x, must
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be larger than the largest zero of L,»_,_,‘*(x)
[15].

X0 > Xzero
~[(24—2)"2 ~1.85575(24—2)"6]2. (19)

Thus justifies our neglect of 1/x? terms in (12).

A direct determination of x, shows that 24— X, is
positive and increases with increasing A. Thus 1t is
not quite correct to say that chiral symmetry break-
1ng occurs at the “critical” coupling «(24) = .. On
the other hand 24 — x, does not grow as fast as 4 since
(19) indicates that ae(xg)/ . =2A4/xy— 1+ as A—co.

In the following we shall choose u=0 for conve-
nience. We also normalize our solution according to
2(x,) =x to obtain

U(1—4/2,1, x)

U1—4/2, 1, %) (20)

2(x)=xrexp[(x;—x)]

We may now return to finding the dilaton mass as
given by eq. (4). Neglecting terms down by 1/4 and
hinearizing as before we find

mifz ~[And(r)k*/n?]
x [ =2 [yewp-wzo). @

X0 X0

Using the 1dentity U'(q, b, z) = —aU(a+1, b+ 1, 2),
the first integral may be done giving

m2 %~ [2nd(r)x*/n?]

exp(xo—x)U(1-A4/2,1, x)
x2U(1~A72, 1, xo)?

_p
X [U(=A72,0, x)—U(=4/2,0, x5)]. (22)

This integral 1s not very sensitive to the behavior of
the integrand near x, (where our approximations are
suspect), since the itegrand peaks at a point X such
that X—x, grows with A.

Numerically 1t is found that the integral in (22)
approaches ! as 4 grows large, as shown in fig. 1.
(And as expected this 1s also true for nonzero u* << A.)
We know of no a prior: reason to explain this sur-
prising tendency for the integral to approach a con-
stant. But 1t implies that

m2fi:ond(r)yxt/n*, forlarge A. (23)
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Fig | The A dependence of the quantity m2f? where
A=3C,(r)Y/nband b1s defined by kdka(k) = —ba(k)?

Whether or not the integral does in fact tend exactly
10 § as A—oo, it is clear that m2 f2 does not have the
1/4 dependence naively expected. Instead, at least
for large 4, m2 % has surprisingly little dependence
on A.

The dilaton decay constant £, like the pion decay
constant [4,5], is also expected to be relatively in-
sensitive to0 4 and to be of order k. Thus the dilaton
mass is tied quite closely to the dynamical fermion
mass, with the latter being of order k ~2(0). The
case [6] Co(r)> N and C,(r)n<« N3/d(r) imphes
both a large 4 and a confinement scale much smaller
than x. This shows that the dilaton mass we have cal-
culated is independent of confinement physics.

In actual practice, for a technicolor theory, if 4 is
too large then new “sideways” physics will start to
influence the high energy behavior of (k). This new
physics may act as a physical ultraviolet cutoff, as
constdered in ref. [8]. But we may now conclude that
there is never a light dilaton, no matter what the very
high energy behavior of the theory is like.

We have found that even though the apparent
measure of explicit scale breaking, #(«(k)), is small
for any k relevant for the spontaneous chiral (and
scale) symmetry breaking, the pseudo-Goldstone
boson associated with this apparent approximate
scale symmetry does not have a small mass relative
to the dynamical fermion mass. The resolution to this
paradox lies in the fact that effective action 1s a func-
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tional of the order parameter 2'(k). At the preferred
point in function space the function kX(k) does not
decrease until high momentum, with the result that
the effective action always samples a (k) over a suf-
ficiently large range of k such that the variation of
a(k) is always significant. It is never a good ap-
proximation to set «(k) equal to a constant in the
effective action governing chiral symmetry breaking
for an asymptotically free theory with no ultraviolet
cutoff,

This research was supported 1n part by the Natural
Sciences and Engineering Research Council of
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